Categories
Industrial engineering

HISTORY OF INDUSTRIAL ENGINEERING – INTERCHANGEABILITY OF PARTS

HISTORY OF INDUSTRIAL ENGINEERING – INTERCHANGEABILITY OF PARTS

Another key development in the history of industrial engineering was the concept of inter- changeable parts. The feasibility of the concept as a sound industrial practice was proven through the efforts of Eli Whitney and Simeon North in the manufacture of muskets and pistols for the U.S. government. Prior to the innovation of interchangeable parts, the making of a product was carried out in its entirety by an artisan, who fabricated and fitted each required piece. Under Whitney’s system, the individual parts were mass-produced to tolerances tight enough to enable their use in any finished product. The division of labor called for by Adam Smith could now be carried out to an extent never before achievable, with individual workers producing single parts rather than completed products. The result was a significant reduction in the need for specialized skills on the part of the workers a result that eventually led to the industrial environment, which became the object of study of Frederick W. Taylor.

Categories
Industrial engineering

PIONEERS OF INDUSTRIAL ENGINEERING – TAYLOR AND SCIENTIFIC MANAGEMENT (Part one)

PIONEERS OF INDUSTRIAL ENGINEERING – TAYLOR AND SCIENTIFIC MANAGEMENT (Part one)

While Frederick W. Taylor did not use the term industrial engineering in his work, his writings and talks are generally credited as being the beginning of the discipline. One cannot presume to be well versed in the origins of industrial engineering without reading Taylor’s books: Shop Management and The Principles of Scientific Management. An engineer to the core, he earned a degree in mechanical engineering from Stevens Institute of Technology and developed several inventions for which he received patents. While his engineering accomplishments would have been sufficient to guarantee him a place in history, it was his contributions to management that resulted in a set of principles and concepts considered by Drucker to be “possibly the most powerful as well as lasting contribution America has made to Western thought since the Federalist Papers.”

The core of Taylor’s system consisted of breaking down the production process into its component parts and improving the efficiency of each. Paying little attention to rules of thumb and standard practices, he honed manual tasks to maximum efficiency by examining each component separately and eliminating all false, slow, and useless movements. Mechanical work was accelerated through the use of jigs, fixtures, and other devices many invented by Taylor himself. In essence, Taylor was trying to do for work units what Whitney had done for material units: standardize them and make them interchangeable.

Improvement of work efficiency under the Taylor system was based on the analysis and improvement of work methods, reduction of the time required to carry out the work, and the development of work standards. With an abiding faith in the scientific method, Taylor’s contribution to the development of “time study” was his way of seeking the same level of predictability and precision for manual tasks that he had achieved with his formulas for metal cutting.

Categories
Industrial engineering

PIONEERS OF INDUSTRIAL ENGINEERING – TAYLOR AND SCIENTIFIC MANAGEMENT (Part two)

PIONEERS OF INDUSTRIAL ENGINEERING – TAYLOR AND SCIENTIFIC MANAGEMENT (Part two)

Taylor’s interest in what today we classify as the area of work measurement was also motivated by the information that studies of this nature could supply for planning activities. In this sense, his work laid the foundation for a broader “science of planning”: a science totally empirical in nature but one that he was able to demonstrate could significantly improve productivity. To Taylor, scientific management was a philosophy based not only on the scientific study of work but also on the scientific selection, education, and development of workers.

His classic experiments in shoveling coal, which he initiated at the Bethlehem Steel Corporation in 1898, not only resulted in development of standards and methods for carrying out this task, but also led to the creation of tool and storage rooms as service departments, the development of inventory and ordering systems, the creation of personnel departments for worker selection, the creation of training departments to instruct workers in the standard methods, recognition of the importance of the layout of manufacturing facilities to ensure minimum movement of people and materials, the creation of departments for organizing and planning production, and the development of incentive payment systems to reward those workers able to exceed standard outputs. Any doubt about Taylor’s impact on the birth and development of industrial engineering should be erased by simply correlating the previously described functions with many of the fields of work and topics that continue to play a major role in the practice of the profession and its educational content at the university level.

Categories
Industrial engineering

PIONEERS OF INDUSTRIAL ENGINEERING – FRANK AND LILLIAN GILBRETH

PIONEERS OF INDUSTRIAL ENGINEERING – FRANK AND LILLIAN GILBRETH

The other cornerstone of the early days of industrial engineering was provided by the husband and wife team of Frank and Lillian Gilbreth. Consumed by a similar passion for efficiency, Frank Gilbreth’s application of the scientific method to the laying of bricks produced results that were as revolutionary as those of Taylor’s shoveling experiment. He and Lillian extended the concepts of scientific management to the identification, analysis, and measurement of fundamental motions involved in performing work. By applying the motion-picture camera to the task of analyzing motions they were able to categorize the elements of human motions into 18 basic elements or therbligs. This development marked a distinct step forward in the analysis of human work, for the first time permitting analysts to design jobs with knowledge of the time required to perform the job. In many respects these developments also marked the beginning of the much broader field of human factors or ergonomics.

While their work together stimulated much research and activity in the field of motion study, it was Lillian who also provided significant insight and contributions to the human issues associated with their studies. Lillian’s book, The Psychology of Management (based on her doctoral thesis in psychology at Brown University), advanced the premise that because of its emphasis on scientific selection and training, scientific management offered ample opportunity for individual development, while traditional management stifled such development by concentrating power in a central figure. Known as the “first lady of engineering,” she was the first woman to be elected to the National Academy of Engineering and is generally credited with bringing to the industrial engineering profession a concern for human welfare and human relations that was not present in the work of many pioneers of the scientific management movement.

Categories
Industrial engineering

OTHER PIONEERS OF INDUSTRIAL ENGINEERING (Part one)

OTHER PIONEERS OF INDUSTRIAL ENGINEERING (Part one)

In 1912, the originators and early pioneers, the first educators and consultants, and the managers and representatives of the first industries to adopt the concepts developed by Taylor and Gilbreth gathered at the annual meeting of the American Society of Mechanical Engineers (ASME) in New York City. The all-day session on Friday, December 6, 1912, began with a presentation titled “The Present State of the Art of Industrial Management.” This report and the subsequent discussions provide insight and understanding about the origin and relative contributions of the individuals involved in the birth of a unique new profession: industrial engineering.

In addition to Taylor and Gilbreth, other pioneers present at this meeting included Henry Towne and Henry Gantt. Towne, who was associated with the Yale and Towne Manufacturing Company, used ASME as the professional society to which he presented his views on the need for a professional group with interest in the problems of manufacturing and management. This suggestion ultimately led to the creation of the Management Division of ASME, one of the groups active today in promoting and disseminating information about the art and science of management, including many of the topics and ideas industrial engineers are engaged in. Towne was also concerned with the economic aspects and responsibilities of the engineer’s job including the development of wage payment plans and the remuneration of workers. His work and that of Frederick Halsey, father of the Halsey premium plan of wage payment, advanced the notion that some of the gains realized from productivity increases should be shared with the workers creating them.

Categories
Industrial engineering

OTHER PIONEERS OF INDUSTRIAL ENGINEERING (Part two)

OTHER PIONEERS OF INDUSTRIAL ENGINEERING (Part two)

Gantt’s ideas covered a wider range than some of his predecessors. He was interested not only in standards and costs but also in the proper selection and training of workers and in the development of incentive plans to reward them. Although Gantt was considered by Taylor to be a true disciple, his disagreements with Taylor on several points led to the development of a “task work with bonus” system instead of Taylor’s “differential piece rate” system and explicit procedures for enabling workers to either protest or revise standards. He was also interested in scheduling problems and is best remembered for devising the Gantt chart: a systematic graphical procedure for planning and scheduling activities that is still widely used in project management.

In attendance were also the profession’s first educators including Hugo Diemer, who started the first continuing curriculum in industrial engineering at Pennsylvania State College in 1908; William Kent, who organized an industrial engineering curriculum at Syracuse University in the same year; Dexter Kimball, who presented an academic course in works administration at Cornell University in 1904; and C. Bertrand Thompson, an instructor in industrial organization at Harvard, where the teaching of Taylor’s concepts had been implemented. Consultants and industrial managers at the meeting included Carl Barth, Taylor’s mathematician and developer of special purpose slide rules for metal cutting; John Aldrich of the New England Butt Company, who presented the first public statement and films about micro- motion study; James Dodge, president of the Link-Belt Company; and Henry Kendall, who spoke of experiments in organizing personnel functions as part of scientific management in industry. Two editors present were Charles Going of the Engineering Magazine and Robert Kent, editor of the first magazine with the title of Industrial Engineering. Lillian Gilbreth was perhaps the only pioneer absent since at that time women were not admitted to ASME meetings.

Another early pioneer was Harrington Emerson. Emerson became a champion of efficiency independent of Taylor and summarized his approach in his book, the Twelve Principles of Efficiency. These principles, which somewhat paralleled Taylor’s teachings, were derived primarily through his work in the railroad industry. Emerson, who had reorganized the work shops of the Santa Fe Railroad, testified during the hearings of the Interstate Commerce Commission concerning a proposed railroad rate hike in 1910 to 1911 that scientific management could save “a million dollars a day.” Because he was the only “efficiency engineer” with firsthand experience in the railroad industry, his statement carried enormous weight and served to emblazon scientific management on the national consciousness. Later in his career he became particularly interested in selection and training of employees and is also credited with originating the term dispatching in reference to shop floor control, a phrase that undoubtedly derives from his railroad experience.

Categories
Industrial engineering

About Quality control

About Quality control

Quality control is a process employed to ensure a certain level of quality in a product or service. It may include whatever actions a business deems necessary to provide for the control and verification of certain characteristics of a product or service. The basic goal of quality control is to ensure that the products, services, or processes provided meet specific requirements and are dependable, satisfactory, and fiscally sound.

Essentially, quality control involves the examination of a product, service, or process for certain minimum levels of quality. The goal of a quality control team is to identify products or services that do not meet a company’s specified standards of quality. If a problem is identified, the job of a quality control team or professional may involve stopping production temporarily. Depending on the particular service or product, as well as the type of problem identified, production or implementation may not cease entirely.

Usually, it is not the job of a quality control team or professional to correct quality issues. Typically, other individuals are involved in the process of discovering the cause of quality issues and fixing them. Once such problems are overcome, the product, service, or process continues production or implementation as usual.

Quality control can cover not just products, services, and processes, but also people. Employees are an important part of any company. If a company has employees that don’t have adequate skills or training, have trouble understanding directions, or are misinformed, quality may be severely diminished. When quality control is considered in terms of human beings, it concerns correctable issues. However, it should not be confused with human resource issues.

Often, quality control is confused with quality assurance. Though the two are very similar, there are some basic differences. Quality control is concerned with the product, while quality assurance is process–oriented.

Even with such a clear-cut difference defined, identifying the differences between the two can be hard. Basically, quality control involves evaluating a product, activity, process, or service. By contrast, quality assurance is designed to make sure processes are sufficient to meet objectives. Simply put, quality assurance ensures a product or service is manufactured, implemented, created, or produced in the right way; while quality control evaluates whether or not the end result is satisfactory.

Categories
Industrial engineering

Industrial Engineering and the post–world war I era

Industrial Engineering and the post–world war I era

By the end of World War I, scientific management had firmly taken hold. Large-scale, vertically integrated organizations making use of mass production techniques were the norm. Application of these principles resulted in spectacular increases in production. Unfortunately, however, because increases in production were easy to achieve, management interest was focused primarily on the implementation of standards and incentive plans, and little attention was paid to the importance of good methods in production. The reaction of workers and the public to unscrupulous management practices such as “rate cutting” and other speedup tactics, combined with concerns about dehumanizing aspects of the application of scientific management, eventually led to legislation limiting the use of time standards in government operations.

Categories
Industrial engineering

Methods Engineering and Work Simplification in Industrial Engineering

Methods Engineering and Work Simplification in Industrial Engineering

These reactions led to an increased interest in the work of the Gilbreths. Their efforts in methods analysis, which had previously been considered rather theoretical and impractical, became the foundation for the resurgence of industrial engineering in the 1920s and 1930s. In 1927, H. B. Maynard, G. J. Stegmerten, and S. M. Lowry wrote Time and Motion Study, emphasizing the importance of motion study and good methods. This eventually led to the term methods engineering as the descriptor of a technique emphasizing the “elimination of every unnecessary operation” prior to the determination of a time standard. In 1932, A. H. Mogenson published Common Sense Applied to Time and Motion Study, in which he stressed the concepts of motion study through an approach he chose to call work simplification. His thesis was simply that the people who know any job best are the workers doing that job. Therefore, if the workers are trained in the steps necessary to analyze and challenge the work they are doing, then they are also the ones most likely to implement improvements. His approach was to train key people in manufacturing plants at his Lake Placid Work Simplification Conferences so that they could in turn conduct similar training in their own plants for managers and workers. This concept of taking motion study training directly to the workers through the work simplification programs was a tremendous boon to the war production effort during World War II.

The first Ph.D. granted in the United States in the field of industrial engineering was also the result of research done in the area of motion study. It was awarded to Ralph M. Barnes by Cornell University in 1933 and was supervised by Dexter Kimball. Barnes’s thesis was rewritten and published as Motion and Time Study: the first full-length book devoted to this subject. The book also attempted to bridge the growing chasm between advocates of time study versus motion study by emphasizing the inseparability of these concepts as a basic principle of industrial engineering.

Another result of the reaction was a closer look at the behavioral aspects associated with the workplace and the human element. Even though the approach taken by Taylor and his followers failed to appreciate the psychological issues associated with worker motivation, their work served to catalyze the behavioral approach to management by systematically raising questions on authority, motivation, and training. The earliest writers in the field of industrial psychology acknowledged their debt to scientific management and framed their discussions in terms consistent with this system.

Categories
Industrial engineering

The Hawthorne Experiment and the developing of Industrial Engineering

The Hawthorne Experiment and the developing of Industrial Engineering

A major episode in the quest to understand behavioral aspects was the series of studies conducted at the Western Electric Hawthorne plant in Chicago between 1924 and 1932. These studies originally began with a simple question: How does workplace illumination affect worker productivity? Under sponsorship from the National Academy of Science, a team of researchers from the Massachusetts Institute of Technology (MIT) observed groups of coil-winding operators under different lighting levels. They observed that productivity relative to a control group went up as illumination increased, as had been expected. Then, in another experiment, they observed that productivity also increased when illumination decreased, even to the level of moonlight. Unable to explain the results, the original team abandoned the illumination studies and began other tests on the effect of rest periods, length of work week, incentive plans, free lunches, and supervisory styles on productivity. In most cases the trend was for higher than normal output by the groups under study.

Approaching the problem from the perspective of the “psychology of the total situation,” experts brought in to study the problem came to the conclusion that the results were primarily due to “a remarkable change in the mental attitude in the group.” Interpretations of the study were eventually reduced to the simple explanation that productivity increased as a result of the attention received by the workers under study. This was dubbed the Hawthorne effect. However, in subsequent writings this simple explanation was modified to include the argument that work is a group activity and that workers strive for a sense of belonging—not simple financial gain—in their jobs. By emphasizing the need for listening and counseling by managers to improve worker collaboration, the industrial psychology movement shifted the emphasis of management from technical efficiency—the focus of Taylorism—to a richer, more complex, human-relations orientation.

You can see more in “Industrial Engineering Handbook”