Industrial engineering



Human factors is a science that investigates human behavioural, cognitive, and physical abilities and limitations in order to understand how individual and teams will interact with products and systems.

Human factors engineering is the discipline that takes this knowledge and uses it to specify, design, and test systems to optimize safety, productivity, effectiveness, and satisfaction.

Human factors is important to industrial and systems engineering because of the prevalence of humans within industrial systems. It is humans who, for the most part, are called on to design, manufacture, operate, monitor, maintain, and repair industrial systems. In each of these cases, human factors should be uses to ensure that the design will meet system requirements in performance, productivity, quality, reliability, and safety.

The importance of including human factors in systems design cannot be overemphasized. There are countless examples that illustrate its importance for systems performance. Mackenzie found in 1994 that in a survey of 1100 computer-related fatalities between 1979 and 1992. 92% could be attributed to failures in the interaction between a human and computer. The extend of the 1979 accident at the Three Mile Island nuclear power plant was largely due to human factors challenges, almost resulting in a disastrous nuclear catastrophe. The infamous butterfly ballot problem in Florida in the 2000 U.S. presidential election is a clear example of an inadequate system interface yielding remarkably poor performance. Web sites such as and provide extensive listings of designs from everyday life that suffer from poor consideration of human factors. Neophytes often refer to human factors as common sense. However, the prevalence of poor design suggests that human factors sense is not as common as one might think. The consequences of poor human factors design can be inadequate system performance, reduced product sales, significant product damage, and human injury.